Selected publications
I. Chaves, V. Farias, A. Perez, D. Mesquita, J. Machado. Differentially Private Selection using Smooth Sensitivity IEEE S&P 2025
T. da Silva, A. Souza, O. Rivasplata, V. Garg, S. Kaski, D. Mesquita. Generalization and Distributed Learning of GFlowNets ICLR 2025
T. da Silva, R. Alves, E. da Silva, A. Souza, V. Garg, S. Kaski, D. Mesquita. When do GFlowNets learn the right distribution? ICLR 2025
T. da Silva, D. de Souza, D. Mesquita. Streaming Bayes GFlowNets NeurIPS 2024
T. da Silva, E. Silva, D. Mesquita. On Divergence Measures for Training GFlowNets NeurIPS 2024
P. Blomstedt, D. Mesquita, O. Rivasplata, J. Lintusaari, T. Sivula. J. Corander, S. Kaski. Meta-analysis of Bayesian analyses Bayesian Analysis 2024
A. Matias, C. Mattos, J. Gomes, D. Mesquita. Amortized Variational Deep Kernel Learning ICML 2024
T. da Silva, A. Souza, L. Carvalho, S. Kaski, D. Mesquita. Embarrassingly Parallel GFlowNets ICML 2024
D. de Souza, A. Nikitin, S. T. John, M. Ross, M. A. Álvarez, M. P. Deisenroth, J. Gomes, D. Mesquita, C. Mattos. Thin and deep Gaussian processes NeurIPS 2023
T. Pereira, E. Nascimento, L. Resck, D. Mesquita, A. Souza. Distill n' Explain: explaining graph neural networks using simple surrogates AISTATS 2023
A. Souza, D. Mesquita, S. Kaski, V. Garg. Provably expressive temporal graph networks NeurIPS 2022
D. de Souza, D. Mesquita, S. Kaski, L. Acerbi. Parallel MCMC without embarrassing failures AISTATS 2022
K. El Mekkaoui, D. Mesquita, P. Blomstedt, S. Kaski. Federated stochastic gradient Langevin dynamics UAI 2021
D. Mesquita, A. Souza, S. Kaski. Rethinking pooling in graph neural networks NeurIPS 2020
D. de Souza, D. Mesquita, J. Gomes, C. Mattos. Learning GPLVM with arbitrary kernels using the unscented transformation AISTATS 2020
D. Mesquita, P. Blomstedt, S. Kaski. Parallel MCMC using deep invertible transformations UAI 2019